Evaluation of Laboratory Application of Camelid Sera Containing Heavy-Chain Polyclonal Antibody
Evaluation of Laboratory Application of Camelid Sera Containing Heavy-Chain Polyclonal Antibody Against Recombinant CTLA-4 Protein.
Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is a critical negative immunomodulatory receptor that is normally expressed in activated T cells and noticeably, in many cancerous cells. Indeed, molecular detection of CTLA-4 protein is crucial in basic research.
In this work, the extracellular domain of the human CTLA-4 (hCTLA-4) protein was cloned, expressed, and purified. Subsequently, this protein was used as an antigen for camel (Camelus dromedarius) immunization to obtain polyclonal camelid sera against this protein.
Furthermore, we evaluated the benefits of applying camelid hyperimmune sera containing heavy-chain antibodies in different antibody-based techniques. Our results indicated that hCTLA-4 protein was successfully expressed in the prokaryotic system. The polyclonal antibody (pAb) that raised against recombinant hCTLA-4 protein was able to detect the CTLA-4 protein in antibody-based techniques, such as enzyme-linked immunosorbent assay, western blotting, flow cytometry and immunohistochemistry (IHC) staining.
This study shows that, due to the advantages such as multi-epitope-binding ability, camelid pAbs are potent to efficiently apply for molecular detection of CTLA-4 receptors in fundamental antibody-based researches such as IHC.
Expression of the small cysteine-rich protein SCR96 from Phytophthora cactorum in mammalian cells: phytotoxicity and exploitation of its polyclonal antibody.
- We aimed to investigate the expression of a novel small cysteine-rich (SCR) effector protein SCR96 from the phytopathogenic oomycete Phytophthora cactorum in mammalian cells, its bioactivity and to exploit its polyclonal antibody.The gene encoding the SCR effector protein SCR96 was codon-optimized, custom-synthesized, cloned into pcDNA3.1(-) and overexpressed in human embryonic kidney (HEK) 293-6E cells.
- The recombinant protein SCR96 was prone to aggregation and purified with its monomer to homogeneity with a predicted molecular weight of 8.9 kDa. SCR96 exhibited strong phytotoxic activity on tomato seedlings at 24 h post treatment with 4.2 μg of the purified protein. An anti-SCR96 polyclonal antibody was prepared by immunization of New Zealand white rabbits.
- The good-titer antibody had a detection sensitivity at 6.25-ng level and could specifically detect the SCR96 protein expressed either in yeast, or in tomato leaves.Transient production of the SCR effector protein SCR96 in mammalian cells is reliable, providing sufficient recombinant protein that can be utilized for analysis of its phytotoxic activity and preparation of its polyclonal antibody.
Polyclonal antibody production anti Pc_312-324 peptide. Its potential use in electrochemical immunosensors for transgenic soybean detection.
A new polyclonal antibody that recognizes the CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS), which provides resistance to glyphosate in soybean (Roundup Ready®, RR soybean), was produced. New Zealand rabbits were injected with a synthetic peptide (Pc_312-324, (PEP)) present in the soybean CP4-EPSPS protein.
The anti-PEP antibodies production was evaluated by electrophoresis (SDS-PAGE) and an enzyme-linked immunosorbent assay (ELISA) was developed in order to study their specificity. The ELISA showed that the polyclonal antibody was specific to PEP. In addition, the anti- PEP was immobilized onto a gold disk electrode and the antigen-antibody interaction was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
Moreover, the EIS showed that the electron transfer resistance of the modified electrode increased after incubation with solutions containing CP4-EPSPS protein from RR transgenic soybean, while no changes were detected after incubation with no-RR soybean proteins.
These results suggest that the CP4-EPSPS was immobilized onto the electrode, due to the specific interaction with the anti-PEP. These results show that this antigen-antibody interaction can be detected by electrochemical techniques, suggesting that the anti-PEP produced can be used in electrochemical immunosensors development to quantify transgenic soybean.
Tracking the polyclonal neutralizing antibody response to a dengue virus serotype 1 type-specific epitope across two populations in Asia and the Americas.
The four dengue virus serotypes (DENV1-4) cause major public health problems worldwide. Highly neutralizing type-specific human monoclonal antibodies (hmAbs) target conformation-dependent epitopes on the DENV envelope protein, including 1F4, a DENV1 type-specific hmAb. Using a recombinant DENV2 virus displaying the DENV1 1F4 epitope (rDENV2/1), we measured the proportion and kinetics of DENV1 neutralizing antibodies targeting the 1F4 epitope in individuals living in Asia and the Americas where different DENV1 genotypes were circulating.
Samples from 20 individuals were analyzed 3 and 18 months post-primary DENV1 infection, alongside samples from 4 individuals collected annually for four years post-primary DENV1 infection, from two studies in Nicaragua. We also analyzed convalescent post-primary DENV1 plasma samples from Sri Lankan individuals. We found that neutralizing antibodies recognizing the 1F4 epitope vary in prevalence across both populations and were detected from 20 days to four years post-infection.
Additionally, both populations displayed substantial variability, with a range of high to low proportions of DENV1 type-specific neutralizing antibodies recognizing the 1F4 epitope seen across individuals. Thus, the 1F4 epitope is a major but not exclusive target of type-specific neutralizing antibodies post-primary infection with different DENV1 genotypes in Asia and Latin America, and additional epitopes likely contribute to type-specific neutralization of DENV1.
Characterization of polyclonal antibodies to herpes simplex virus types 1 and 2.
- Infections with herpes simplex virus (HSV) types 1 and 2 have been linked to oral, facial, genital lesions, as well as some visceral organ changes in patients under immunosuppressed conditions.
- Immunohistochemistry (IHC) with HSV antibodies is used for identification of the viruses in tissue samples. In this study, two polyclonal antibodies, prepared separately with HSV-1 and HSV-2 immunogens, were characterized in comparison to a monoclonal antibody to HSV-1 (10A3).
- The polyclonal anti-HSV-1 and monoclonal antibody 10A3 were shown to be reactive to viral proteins of both HSV-1 and HSV-2 on Western blots, while the polyclonal anti-HSV-2 was reactive to HSV-2 proteins, but not to those of HSV-1. Cross-reactivity was not observed to proteins of six other frequently encountered herpes viruses. IHC characterization was performed on 29 cases of HSV-infected tissue samples, 61 samples infected with other herpes viruses and 35 samples without known infection.
- By IHC, the polyclonal anti-HSV-1 and a monoclonal antibody 10A3 exhibited a signal, mainly in a nuclear pattern, in all of the HSV-infected samples and not in other tissue types. A positive signal, mainly in the cytoplasm, was identified with the polyclonal anti-HSV-2 in 21 of the 29 HSV-infected samples.
- Genotyping analysis was successful in 14 of the HSV-infected samples, with IHC HSV-2 positivity correlative to the HSV-2 genotype. The results demonstrate that these antibodies are useful tools for identification of HSV-1 and HSV-2, and their combinatorial application may help to distinguish between these two types of infection.